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We demonstrate the emergence of the conformal group SO(4,2) from the Clifford algebra
of spacetime. The latter algebra is a manifold, called Clifford space, which is assumed
to be the arena in which physics takes place. A Clifford space does not contain only
points (events), but also lines, surfaces, volumes, etc., and thus provides a framework
for description of extended objects. A subspace of the Clifford space is the space whose
metric is invariant with respect to the conformal group SO(4,2) which can be given either
passive or active interpretation. As advocated long ago by one of us, active conformal
transformations, including dilatations, imply that sizes of physical objects can change
as a result of free motion, without the presence of forces. This theory is conceptually
and technically very different from Weyl's theory and provides when extended to a
curved conformal space a resolution of the long standing problem of realistic masses in
Kaluza—Klein theories.
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1. INTRODUCTION

Extended objects such as membranes or branes of any dimension are nowa-
days subject of extensive studies. A deeper geometric principle behind such the-
ories remains to be fully explored. It has been found that various string theories
are different faces of a conjectured single theory, called M-theory which has not
yet been rigorously formulated. In a number of recent works branes have been
considered from the point of view of the geometric calculus based on Clifford al-
gebra (Castro, 1998, 2000a,b, 2001;$¥&\2001a). The latter is a very useful tool
for description of geometry and physics (Ablamoustzal., 2000; Castro, 1998,
2000a,b, 2001; Castro and R#y 2002; Hestenes, 1966, 1984; Laserbal.,
1993a,b; Lounesto, 2001; Pad, 2001a,b; Pezzaglia, 1993, 1996, 1997, 1999;
Pezzaglia and Adams, 1997; Pezzaglia and Differ, 1993). A space (or spacetime)
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consists of points (or events). But besides points there are also lines, surfaces, vol-
umes, etc. Description of such geometric objects turns out to be very elegant if one
employs multivectors which are the outer products of vectors. All those objects are
elements of Clifford algebra. Since in physics we do not consider point particles
only, but also extended objects, it appears natural to consider Clifford algebra as an
arenainwhich physics takes place. Clifford algebra as an arena for physics has been
calledpandimensional continuuifezzagila, 1993, 1996, 1997, 1999; Pezzagial
and Adams, 1997; Pezzagila and Differ, 1993espacdCastro, 2000a,b, 2001).

In this paper we report about a possibly far reaching observation that Clifford
algebra of 4-dimensional spacetime contains conformal group SO(4,2) as a special
case. Itwas proposed long time ago (§l&v1977, 1980) that conformal space can
serve as the arena for physic which involves active dilatations and dilatational mo-
tions, and that a curved conformal space is a possible realization for Kaluza—Klein
theory. A remarkable property of such an approach to Kaluza—Klein theories is
that the notorious problem of Planck mass does not occur, since the 4-dimensional
mass is given by the expression= ./Mgg + 7576 iN Which myg is the invariant
mass in six dimensiongg the electric charge and; the dilatational momentum
(taken to be zero for the ordinary electron). However in that old work it was not
yet realized that the variablesand entering the description of SO(4,2)—which
obviously were not just the ordinary extra dimensions—are natural ingredients of
the Clifford algebra of 4-dimensional spacetime: they are coordinatéssptaice

The idea to allow objects to change in size when they move in spacetime is in
factvery old and dates back to Weyl [1918]. However, our proposal, initiated in refs.
(Pawsi¢, 1977, 1980), differs from that of Weyl both conceptually and technically,
andis free from Einstein’s well-known criticism. In Weyl's geometry one is gauging
the local scale transformations by introducing a gauge field, identified with the
electromagnetic field potential, such that sizes of objects (and the rate at which
clocks tick) are path dependent. Einstein pointed out that this would effect spectral
lines emitted by the atoms which had followed different paths in spacetime and
then brought together. A result would be blurred spectra with no distinctive spectral
lines, contrary to what we observe. In our approach we are not gauging the local
scale transformations and scale changes of objects are not due to the different
paths they traverse. Scale is postulated as an extra degree of freedom, analogous to
position. If the observer chooses to be in the same scale-frame of reference as the
particular object he observes (for more detailed description see refsiqP8/77,
1980)), no scale changes for that object are observed (with respect to the observer)
in its ordinary spacetime motion. However, in general, our theory predicts that in a
given scale-frame of reference chosen by the observer, different objects can have
different scales (i.e., different sizes) and consequently emit spectral lines whose
wavelengths are shifted by the corresponding scale factors. When considering the
quantized theory, not only position but also scale has to be quantizedidPav”
1977, 1980) which affects not only relative positions but also relatives scales of
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bound objects, e.g., the atoms within a crystal. A crystal as a free object can have
arbitrary position and scale, while the atoms bound within the crystal have the
relative positions and scales as determined by the solutions of thedhoher
equation (generalized to C-space). Possible astrophysical implications of scale as
a degree of freedom were discussed §g977, 1980).

2. ON GEOMETRY, CLIFFORD ALGEBRA AND PHYSICS

Since the appearance of the seminal books by Hestenes (1966, 1984) we have a
very useful language and tool for geometry and physics, which is being recognized
by an increasing number of researchers (Ablamowital, 2000; Castro and
Pawsi¢, 2002; Lasenbygt al,, 1993a,b; Lounesto, 2001; Pas, 2001b; Pezzaglia,
1993, 1996, 1997, 1999; Pezzaglia and Adams, 1997; Pezzaglia and Differ, 1993).
Although Clifford algebra is widely used and explored both in mathematics and
physics, its full power for formulation of new physical theories has been recognized
only relatively recently (Castro, 2000a,b, 2001; §iév2001a,b; Pezzaglia, 1993,
1996, 1997, 1999; Pezzagliaand Adams, 1997; Pezzaglia and Differ, 1993). For the
reasons of self-consistency we will provide a brief introduction into the geometric
calculus based on Clifford algebra and point out how Minkowski spacetime can
be generalized to Clifford space.

The starting observation is that the basis veotpiis ann-dimensional space
V, satisfy the Clifford algebra relations

1
€ -6 = E(eueu + eveu) = Ouv (1)

whereg,, is the metric ofV,,. The dot denotes thianer productof two vectors. It
is the symmetric part of the noncommutati®éfford or geometric product

€.6,=6,-6 +€e, A6 2
whose antisymmetric part is thrgedgeor outer product

1 1
e e = E(euev —ee,)= E[e,“ €.l 3)

While the inner product is a scalar, the outer product is a bivector. It denotes an
oriented areaof a 2-surface enclosed by a 1-loop. The precise shape of the loop is
not determined. In a similar manner we can form higheitivectorsor r-vectors

1
€L AEL,LA - A, = ﬁ[eul,euz,...,e,tr] (4)

by antisymmetrizing the Clifford product ofvectors. Such an objectis interpreted
geometrically to denote an orientedgarea of am -surface enclosed by an ¢ 1)-
loop. Multivectors are elements of ti@ifford algebra G, of V,,. An element of
C, is called aClifford number
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In the geometric (Clifford) product (2) a scalar and a bivector occur in the
sum. In general, a Clifford number is a superposition, call&iifford aggregate
or polyvector

1 1, 1 ...
Azaza"e,ntaa" e,LAeU+-~-+Ha"1 Hng, Ao Ay, (5)
In an n-dimensional space an n-vector is a multivector of the highest possible
degree; anr(+ 1)-vector is identically zero.

Considering now a flat 4-dimensional spacetime with basis veatprs
satisfying

Y Yv = Nuy (6)
wheren,,, is the diagonal metric with signature-(— — —) Eq. (5) reads
1 1
D=d+d%u+Svar+ 50" AnAy
1 Hvpo
+ g4 A A Y A Ve (7
whered, d*, d*”, ..., are scalar coefficients. The Clifford algebra in Minkowski

spaceV, is called theDirac algebra
Letusintroduce the symboifor the unit element of 4-volume (pseudoscalar)

| =wAnAY2Ays=yvonyays 12=-1 ®)

Using the relations
Ye AV AYo A Ve = | €upo )
Yu NV A Vp = l€upo v’ (10)

where €,,,, is the totally antisymmetric tensor, and introducing the new
coefficients

S=d, VH = d*, T™

NI -

dr (11)

1 1
C, = gd“””ewpg, P= Ed‘”p"ewpg (12)

we can rewriteD of Eq. (7) as the sum of a scalar, vector, bivector, pseudovector,
and pseudoscalar:

D = S+ V¥, + T*y Ay, 4+ C*l,, + Pl (13)

So far physics in spacetime has been predominantly using only the vector
part of D. The full Clifford algebra or Dirac algebra have been used in relativistic
quantum theory, but not in the classical special or general relativity, neither in the
theory of strings and branes.
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Assuming that fundamental physical object are not point particles but ex-
tended objects such as strings and branes of arbitrary dimension, it has been pro-
posed (Castro, 2000a,b, 2001; Bidy2001a,b; Pezzaglia, 1993, 1996, 1997, 1999;
Pezzaglia and Adams, 1997; Pezzaglia and Differ, 1993)atimggical quantities
such as positions and velocities of those objects are polyvettass proposed to
rewrite the known fundamental string and brane actions by employing polyvector
coordinates

1 n
X=5 > XMy A Ay, = XPEA (14)
T r=0

Here we use a compact notation in whigtf = X*# arereal coordinates,
andEa =y, A--- Ay, basis vectors of the"2dimensionalClifford algebra
of spacetime. The latter algebra of spacetime positions and corresponding higher
grade objects, namely oriented r-areas, is a manifold which is more general than
spacetime. In the literature such a manifold has been n@aedimensional con-
tinuum(Pezzaglia, 1993, 1996, 1997, 1999; Pezzagliaand Adams, 1997, Pezzaglia
and Differ, 1993) oClifford spaceor C-spacgCastro, 2000a,b, 2001).

The infinitesimal element of position polyvector (14) is

1 n
dX = D odXm by A Ay, = dXAEA (15)
T r=0

We will now calculate its norm squared. Using the definition fordtalar product
of two polyvectorsA andB

Ax B = (AB)o (16)
where( )o means the scalar part of the geometric produBt we obtain
dX2=dX «dX = dXAdXBGag = dXAd Xa (17)
Here
Gag = Eh * Eg (18)

is theC-space metric and' the reverse of a polyvectorA.
For example, if the indices assume the valdes u, B = v, we have

Guv = (6.€)0=€,-6 = Oy (19)
If A=[uv], B =[af]
Gruiies) = (€4 A 8)(8x A€s)o = (6 A &) - (8 A &8)o
= (ey-&)(e - e) — (& - &)(€s - €) = Gualup — GuaTup  (20)

4Reversion or, alternativelyyermitian conjugationis the operation which reverses the order of all
products of vectors in a decomposition of a polyveador
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If A= pu, B=[af]
Guap) = (Eu(ey A €8))o=0 (21)
Explicitly we have

1 n
|dX|? = 5 D o dXIHE A XKy
" r=0

1 1
=ds +dX*d X, + ST AXEA Xy 4+ A XX,
(22)

If y, are taken to be dimensionless so that, X*”, etc., have respectively di-
mensions ofength lengtl?, etc., then a suitable power of a length parameter has
to be included in every term of Eq. (22). One natural choice is to take the length
parameter equal to the Planck schle For simplicity reasons we may then use
the system of units in whichp =1.

In 4-dimensional spacetime the vector (15) and its square (22) can be written
as

1
dX = ds+dx"y, Sdx"y, Ay, + dR“L, + dSI (23)

1
|[dX|* = + dx*dx, + =dx*'dx,, — dx*dx, — d§
dX? = ds? + dx"dx, SAx*dx,, — dXd%, d¥? (24)

where we now use the lower case symbols for coordinates. The minus sign in
the last two terms of the above quadratic form occurs because in 4-dimensional
spacetime with signatures(— ——) we havel? = (yoy1y2y3)(voy1y2ys) = —1,

andl 1 = (y3y2y170)(vorrvays) = —1.

In Eq. (24) the line elemerdx*dx, of the ordinary special or general rel-
ativity is replaced by the line element in Clifford space. A “square root” of such
a generalized line elementdsX of EqQ.'(23). The latter object is polyvector a
differential of the coordinate polyvector field

1 - .
X:s—i—x“yﬂ—{—éx“”yu/\y,,—i—x“lyu—i—sl (25)
whose square is
1
IXI% = 8 X%, o SX K — KUK, — 8 (26)

The polyvectorX contains not only the vector paxt'y,, but also ascalar part
s, tensor part X'y, A y,, pseudovector park*l,,, and pseudoscalar p&st.
Similarly for the differentiald X.

When calculating the quadratic form¥?| and |[d X|> one obtains in 4-
dimensional spacetime with pseudoeuclidean signatdre —) the minus sign
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in front of the squares of the pseudovector and pseudoscalar terms. This is so, be-
cause in such a case the pseudoscalar unit square in flat spacettfme IS =
—1. In four dimensions = | regardless of the signature.

Instead of Lorentz transformations—pseudorotations in spacetime—which
preservex“x, anddx*dx, we have now more general rotations—rotations in
C-space—which presery&X|? and|d X|2.

3. C-SPACE AND CONFORMAL TRANSFORMATIONS

From Egs. (24) and (26) we see that a subgroup of the Clifford Group, or
rotations inC-space is the group SO(4,2). The transformations of the latter group
rotatex”, s, §, but leavex*” and%X* unchanged. Although according to our as-
sumption physics takes place in fd@kspace, it is very instructive first to consider
a subspace df-space, that we shall catbnformal spacevhose isometry group
is SO(4,2).

Coordinates can be given arbitrary symbols. Let us now use the syjtibol
instead ok*, andn®, n®instead o8, s. In other words, instead ok{, §, S) we write
%1% =n*,nu=0,1,2,3a=0,1,2, 3,5, 6. The quadratic form reads

n*Na = Gabi*n” (27)
with
Oap = diag(1,—-1,-1,-1,-1, 1) (28)
being the diagonal metric of the flat 6-dimensional space, a subsp&cepce,
parameterized by coordinatgs The transformations which preserve the quadratic

form (27) belong to the group SO(4,2). It is well known (Barut, and Haugen, 1972;
Kastrup, 1962) that the latter group, when taken on the cone

n%na =0 (29)
is identical to the 15-parameter group of conformal transformations in 4-
dimensional spacetime (Bateman, 1910; Cunningham, 1909; Feiitaly 1962;
Grillo, 1973; Mack, 1968; Niederle and Tolar, 1973; Wess, 1960).
Let us consider first the rotations g andn® which leave coordinates*
unchanged. The transformations that leax@®)? + (1°)? invariant are
n"° = n°cha + n®sha
n’® = n°cha + n®cha (30)
wherea is a parameter of such pseudorotations.

Instead of the coordinates, n® we can introduce (Barut and Haugen, 1972;
Kastrup, 1962) new coordinates according to

ko =n"—n° (31)
A=n>+n° (32)
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In the new coordinates the quadratic form (27) reads

n*na = n*n. — (°)? — (%)% = n*n, — Kk (33)

The transformation (30) becomes
k' =p~ (34)
A= pA (35)

wherep = €. This is just a dilation ok and the inverse dilation df.
Let us now introduce new coordinate’$ accordingx* to®

nt = kx# (36)
Under the transformation (36) we have

't =" @37
but

X* = px* (38)

The latter transformation dilatation of coordinates.
Considering now a line element

dn?dna = dn*dn, — dkda (39)
we find thaton the cone;®n, = 0iitis
dn?dna = k2dx*dx, (40)
even ifx is not constant. Under the transformation (34) we have
dn®dn = dn*dna (41)
dx*dx, = p2dxtdx, 42)

The last relation is dilatation of the 4-dimensional line element related to co-
ordinatesx”. In a similar way also other transformations of the group SO(4,2)
that preserve (29) and (41) we can rewrite in terms of of the coordinéteSo

we obtain—besides dilations—translations, Lorentz transformations, and special
conformal transformations; altogether they are catiedformal transformations

This is awell known old observation (Barut and Haugen, 1972; Kastrup, 1962) and
we shall not discuss it further. What we wanted to point out here is that conformal
group SO(4,2) is a subgroup of the Clifford group.

5These new coordinated should not be confused with coordinaté used in Section 2.
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4. ON THE PHYSICAL INTERPRETATION OF THE
CONFORMAL GROUP SO(4,2)

In order to understand the physical meaning of the transformations (36) from
the coordinateg* to the coordinates” let us consider the following transforma-
tion in 6-dimensional spacé;:

xH = K_ln"
o=—k1
A=xr— K’ln“nu (43)

This is a transformation from the coordinatgs= (n*, «, A) to the new coordi-
natesx? = (x*, &, A). No extra condition on coordinates, such as (29), is assumed
now. If we calculate the line element in the coordinajgsand x?, respectively,

we find the following relation (P&ic, 1980)

dn”dn’ g, — dkdr = a~4(dx“dx" g, — deaA) (44)

We can interpret a transformation of coordinates passively or actively. Ge-
ometric calculus clarifies significantly the meaning of passive and active trans-
formations. Under gassive transformatioma vector remains the same, but its
components and basis vector change. For a velter dn?y, we have

dn’ = dn®y, = dnya =dn (45)
with
a a
dn® = an dn® (46)
and
,on°
Ya= 3n/ayb (47)

Since the vector is invariant, so it is its square:
dn’? = di®ydn"y = dn"dn®gl, = dndn°ga (48)

From Eq. (47) we read that the well known relation between new and old
coordinates:
. an° anf
Gap = 8n/a an

Under anmactive transformatiora vector changes. This means that in a fixed
basis the components of a vector change:

dn’ = dn?y, (50)

a b Ocd (49)
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with
an/a

d /a —
n 3

dn® (51)
The transformed vectaty’ is different from the original vectain = dn?y,. For
the square we find

an/a 9 n/b

d /2=d aq /b —
n 1701 " Gab In° o

dn°dngap (52)

i.e., the transformed line elemeth’? is different from the original line element.
Returning now to the coordinate transformation (43) with the identification
n'® = x&, we can interpret Eq. (44) passively or actively.
Inthepassive interpretatiothe metric tensor and the componetté change
under a transformation, so that in our particular case the relation (48) becomes

dxedxPg, = a~2(dx*dx"g,, — dadA) = dn?dyPgay = dy”dy"g,, — drda

(53)
with
gw 0 O gon 0 O
Op=a?l 0 0—-2], Gaw=|0 0 -2 (54)
-0 -0

2 2

In the above equation the same infinitesimal distance squared is expressed in two
different coordinateg? or x2.

In active interpretationonly d»? change, while the metric remains the same,
so that the transformed element is

dxdx°gap = dx*dx’'g,, — dadA = «~2dn2dngap
= K_Z(dn“dn”g,w — drd)) (55)

The transformed line lelemedi®d x, is physically different from the original line
elemenidndn, by a factora? = 2.

A rotation (30) in the planenf, ) (i.e., the transformation (34),(35) of
(x, 1)) manifests in the new coordinate$ as adilatation of the line element
dx2dx, = k~2dnna:

dx2dx, = p?dx2dx, (56)

All this is true in the full space/s. On the cone;®n, = 0 we haveA =
A —kntn, =0,dA =0 so thatdx*dx, = dx*dx, and we reproduce the rela-
tions (42) which is a dilatation of the 4-dimensional line element. It can be in-
terpreted either passively or actively. In general, the pseudorotatiows ire.,
the transformations of the 15-parameter group SO(4,2) when expressed in terms
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of coordinatex?®, assume on the congn, = 0 the form of the ordinary confor-
mal transformations. They all can be given the active interpretatiosi®eh877,
1980).

5. CONCLUSION

We started from the new paradigm that physical phenomena actually occur not
in spacetime, but in a larger space, the so-cdliiffiord spaceor C-space which
is a manifold associated with the Clifford algebra generated by the basis vectors
v, Of spacetime. An arbitrary element of Clifford algebra can be expanded in
terms of the objectEa, A= 1, 2,..., 2P, which include, wheD = 4, the scalar
unit 1, vectorsy,,, bivectorsy, A y,, pseudovectors, ,, and the pseudoscalar
unit | = 1s. C-space contains 6-dimensional subsp&gespanneti by 1, y,,
andys. The metric ofVg has the signaturei{ — — — —+). It is well known that
the rotations invg, when taken on the conformal conén, = 0, are isomorphic
to the nonlinear transformations of the conformal group in spacetime. Thus we
have found out thaC-space contains—as a subspace—the 6-dimensional space
Ve in which the conformal group acts linearly. From the physical point of view
this is an important and, as far as we know, a novel finding, although it might
look mathematically trivial. So far it has not been clear what could be a physical
interpretation of the 6-dimensional conformal space. Now we see that it is just a
subspace of Clifford space.

We takeC-space seriously as an arena in which physics takes place. The
theory is a very natural, although not trivial, extension of the special relativity in
spacetime. In special relativity the transformations that preserve the quadratic form
are given amctive interpretationthey relate the objects or the systems of reference
inrelative translational motiorAnalogously also the transformations that preserve
the quadratic form (24) or (26) i@-space should be given an active interpretation.
We have found that among such transformations (rotatio@sspace) there exist
the transformations of the group SO(4,2). Those transformations also should be
given an active interpretation as the transformations that relate different physical
objects or reference frames. Since in the ordinary relativity we do not impose
any constraint on the coordinates of a freely moving object so we should not
impose any constraint i€-space, or in the subspatf. However, by using the
projective coordinate transformation (43), without any constraint sughgas= 0,

61t is an old observation (Mirman, 2001) that the generatqgsof SO(4,2) can be realized in terms
of 1, y,., andys. Lorentz generators aid,,, = —L—l[yﬂ, ], dilatations are generated By = Lgs =
—%)/5, translations byP, = L5, + Lg, = %yﬂ(l — iys) and the special conformal _transformations
byLls, — Ley = %yﬂ (1 + iys). This essentially means that the generator$ ape= —L—,'[eah ep] with
€ = (Yu, 5. 1), where care must be taken to replace commutafiorgs] and [1, y,,] with 2y5 and
2y



1704 Castro and Pasi¢

we arrived at the relation (55) for the line elements. If in the coordingitehe

line element is constant, then in the coordinatgshe line element is changing

by a scale factox which, in general, depends on the evolution parametdhe

line element does not necessarily relate the events along a particle’s worldline.
We may consider the line element between two infinitesimally separated events
within an extended object where both have the same coordinate Aabelthat

dA = 0. Then the 6-dimensional line elemeht“dx"g,, — daedA becomes the
4-dimensional line elemerntx*dx"g,, and, because of (55) it changes with
whenk does change. This means that the object changes its size, it is moving
dilatationally (Pasi¢, 1977, 1980). We have thus arrived at a very far reaching
observation that the relativity iG-space impliescale changes of physical objects

as a result of free motion, without presence of any forces or such fields as assumed
in Weyl theoryThis was advocated long time ago (B&y1977, 1980), but without
recurse taC-space.

An immediate project would be to construct the gauge theory associated with
the Clifford algebra of spacetime. Thisis currently under investigation and has been
called the C-space generalization of Maxwell’s Electromagnetism which describes
the dynamics and couplings of extended objects to antisymmetric tensor fields of
arbitrary rank (Auriliaet al.,, in preparation).

REFERENCES

Ablamowitz, R., Fauser, B., Ryan, and J. Sprosig, W. eds. (2@ford Algebras and Applications
in Mathematical Physig3/ols. |, Il, Birkhauser, Boston.

Aurilia, A., Castro, C., and Pavsic, M. (in preparation). A C-space extension of Maxwell’s
Electromagnetism.

Barut, A. O. and Haugen, R. B. (1973nnals of Physicg1, 519.

Bateman, H. (1910Proceedings of the London Mathematical Soc&t923.

Castro, C. (1998)The search for the origins of M theory, loop spaces, bulk/boundary du&kiy-
th/9809102

Castro, C. (2000ahaos, Solitons and Fractalsl, 1721. [hep-th/9912113]

Castro, C. (2000bChaos, Solitons and Fractalsl, 1663. [hep-th/0001134]

Castro, C. (2001)Chaos, Solitons and Fractal®?, 1585. [physics/0011040]

Castro, C. and P&, M. (2002). Higher derivative gravity and torsion from the geometry of C-spaces.
Physics Letters B39, 133. [arXiv:hep-th/0110079]

Cunningham, E. (1909PRroceedings of the London Mathematical Soci&ty7.

Fulton, T., Rohrlich, F., and Witten, L. (196 Reviews of Modern Physi&dl, 442.

Grillo, A. F. (1973).Revue Nuovo Cimen®) 146.

Hestenes, D. (1996%pace—Time Algebr&ordon and Breach, New York.

Hestenes, D. (1984Llifford Algebra to Geometric Calculy®. Reidel, Dordrecht.

Kastrup, H. A. (1962)Annalen der Physik (Lpz7), 388.

Lasenby, A., Doran, C., and Gull, S. (1993&)undations of Physic23, 1295.

Lasenby, A., Doran, C., and Gull, S. (1993&)urnal of Mathematical Physic, 3683.

Lounesto, P. (2001 lifford Algebras and Spinord.ondon Mathematics Series, no. 287, Cambridge
University Press, Cambridge, UK.

Mack, G. (1968)Nuclear Physics B, 499.



Clifford Algebra of Spacetime and the Conformal Group 1705

Mirman, R. (2001)Quantum Field Theory, Conformal Group Theory, Conformal Field Thedoya
Science Publisher, Huntington, NY.

Niederle, J. and Tolar, J. (1973)zechoslovak Journal Physic2B8, 871.

Pawsic, M. (1977).Nuovo Cimento B1, 397.

Pawi¢, M. (1980).Journal of Physics A: Mathematical Socidty, 1367.

Pawsic, M. (2001a)The Landscape of Theoretical Physics: A Global View. From Point Particles to the
Brane World and Beyond, in Search of a Unifying Princjjpleuwer, Dordrecht, The Netherlands.

Pa\sic, M. (2001b).Foundations of Physic31, 1185. [arXiv:hep-th/0011216]

Pezzaglia, W. M. Jr. (1993Llassification of Multivector Theories and Modification of the Postulates
of Physicse-Print Archive: gr-qc/9306006.

Pezzaglia, W. M. Jr. (1996Polydimensional Relativity, a Classical Generalization of the Automor-
phism Invariance Principlee-Print Archive: gr-qc/9608052.

Pezzaglia, W. M. Jr. (1997Rhysical Applications of a Generalized Clifford Calculus: Papapetrou
Equations and Metamorphic Curvatyme-Print Archive: gr-qc/9710027.

Pezzaglia, W. M. Jr. (1999Dimensionally Democratic Calculus and Principles of Polydimensional
Physics e-Print Archive: gr-qc/9912025.

Pezzaglia, W. M. Jr. and Adams, J. J. (199hould Metric Signature Matter in Clifford Algebra
Formulation of Physical Theories®Print Archive: gr-qc/9704048.

Pezzaglia, W. M. Jr. and Differ, A. W. (1993).Clifford Dyadic Superfield from Bilateral Interactions
of Geometric Multispin Dirac Theorye-Print Archive: gr-qc/9311015.

Wess, J. (1960Nuovo Cimentd 8, 1086.

Weyl, H. (1918) Math. Z.2, 384.



